

INTRODUCTION

Arduino is an open-source software that is free; downloading it to my computer allowed me to write and execute codes. The project consisted of 6 steps leading up to simulating a traffic light system with an emergency signal. All components used in this project are from the IOT CORE KIT.

MODULE 2

- DOWNLOADING ARDUINO WAS EASY HOWEVER I RAN INTO A PROBLEM WITH MY COMPUTER WHERE IT WOULD NOT ALLOW ME TO CONNECT TO THE ESP32.
- DOWNLOADING A COM3 DRIVER WAS NEEDED.
- DOWNLOADED DOIT_DEVKIT
- GATHERING INVENTORY

| INVENTORY | |

ESP 32 Board

Colored LEDs: Red, Yellow, Green, and Blue

Wires

Breadboard(s)

LCD Unit with I2C Adapter

Active Buzzer

Mini Router

Push Button(s)

PIR Motion Sensor

ESP32 (PICTURE)

OMICROCONTROLLER MOUNTED AND POWERED ON

INSTALLATION OF ARDUINO IDE

SCREENSHOT OF ARDUINO IDE WITH **PORT** SELECTED FROM TOOLS MENU.

ESP32 WiFi Scan

Screenshot of **Serial Monitor** in Arduino IDE showing the available networks

MODULE 3

- WIRING LED'S
- WIRING 2 BREADBOARDS TO FUNCTION TOGETHER

PICTURE OF CIRCUIT WITH WORKING LEDS

ESP 32 Board

Colored LEDs: Red, Yellow and Green

Wires

Breadboard

SCREENSHOT OF CODE IN ARDUINO IDE

- TESTING AND RUNNING CODE
- INSERTING 3 MORE LEDS
- WIRING NEW LED SET

PICTURE OF CIRCUIT WITH WORKING LEDS

ESP 32 Board

Colored LEDs: Red, Yellow and Green (two sets)

Wires

Breadboard

SCREENSHOT OF CODE IN ARDUINO IDE

MODULE 5

- INCERTING BOTTON SIMULATING CROSSWALK BUTTON
- WRITING CODE TO INITIATE CROSSWALK COUNT DOWN

PICTURE OF THE CIRCUIT WITH WORKING LEDS

ESP 32 Board

Colored LEDs: Red, Yellow, and Green (two sets)

Push Button

Wires

Breadboard

SCREENSHOT OF SERIAL MONITOR IN ARDUINO IDE

sketch_feb5a | Arduino IDE 2.0.4-nightly-20230126 File Edit Sketch Tools Help ψ DOIT ESP32 DEVKIT V1 ▼ sketch feb5a.ino const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014 const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012 const int green LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013 const int red LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25 const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26 const int green IFD2 = 27: // The green IFD2 is wired to Mega board nin GPTO 27 Output Serial Monitor x **₩** ② **=** Message (Enter to send message to 'DOIT ESP32 DEVKIT V1' on 'COM3') New Line ▼ 115200 baud == Do Not Walk == 10 == Walk == == Do Not Walk == Ln 1, Col 24 DOIT ESP32 DEVKIT V1 on COM3 🗘 2 🗖

MODULE 6 • INSTALLING DRIVER FOR LCD SCREEN WIRING FOR LCD SCREEN BUZZER WIRING FOR THE BUZZER

PICTURE OF CIRCUIT WITH WORKING LEDS AND LCD DISPLAY

ESP 32 Board

Colored LEDs: Red, Yellow and Green (two sets)

Push Button

LCD Unit with Message Display (Defective)

Wires

Breadboard

SCREENSHOT OF CODE IN ARDUINO IDE

```
sketch_feb12a | Arduino IDE 2.0.4-nightly-20230126
File Edit Sketch Tools Help

↓ DOIT ESP32 DEVKIT V1 
▼
      sketch feb12a.ino
              // === Gabriel Sandoval ====
              // Module #6 project
              #include <Wire.h> //lcd
              #include <LiquidCrystal I2C.h> //lcd
              LiquidCrystal_I2C lcd(0x27,16,2); //set the LCD address to 0x3F for a 16 chars and 2-line display
              // if it does not work then try 0x3F, if both addresses do not work then run the scan code below
              const int bzr=32:
                                     // GPI032 to connect the Buzzer
              //============== LCD ==============
              const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPI014
              const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPI012
              const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPI013
              const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25
              const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
              const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
              int Xw value;
```

SCREENSHOT OF
SERIAL MONITOR IN
ARDUINO IDE

MODULE 7

- SETTING UP WIRELESS ROUTER
- CONNECTING ESP32 TO WIFI ROUTER
- WRITING AND EXECUTING NEW CODE
- TRIGGERING EMERGENCY SINGAL

PICTURE OF CIRCUIT WITH WORKING LEDS AND LCD DISPLAY

- ESP 32 Board
- Colored LEDs: Red, Yellow, and Green (two sets)
- One Blue LED Emergency Light
- Push Button
- LCD Unit
- Buzzer
- Wires
- Breadboard

SCREENSHOT OF CODE IN ARDUINO IDE

SCREENSHOT OF SERIAL MONITOR IN ARDUINO IDE

CHALLENGES

- TRANSFERRING THE PROJECT ONTO A NEW COMPUTER
- WIRING NOT CONNECTING PROPERLY
- LCD SCREEN DEFECTIVE AND NOT ABLE TO WORK
- PROPERLY INPUTTING NEW CODES
- SETTING UP WI-FI ROUTER WITH HOME INTERNET

SKILLS OBTAINED

System programming

Networking

Organization

Coding

Wiring

Trouble shooting

Time management

THIS PROJECT WAS A GREAT EXPERIENCE, AND I LEARNED A LOT THROUGHOUT THE PROCESS. THERE WERE CHALLENGES I FACE THROUGHOUT THE PROJECT HOWEVER AFTER TROUBLE SHOOTING M SYSTEMS AND REVISING CODES, I WAS ABLE TO GET IT TO PROPERLY FUNCTION. I ENJOYED THE COURSE PROJECT, COURSE, PROFESSOR, AND CLASSMATES.

CONCLUSION

REFERENCES

- COURSE VIDEOS GUIDES
- ARDUINO HELP FORUMS
- YOUTUBE